§% OpenAPI 31Cheat Sheet

Document Structure

An OpenAPIl document is a JSON or YAML file containing the
following root elements:

openapi: 3.1 # The spec version

info: {} API and document info
servers: {} List of available servers
paths: {} List of endpoints
webhooks :

{}
security: {}
components: {}
tags: {}

Authentication description
Reusable components (Sref)

#

#

#

List of webhooks

#

#

Define the grouping tags

General Information

info:
title: Your Awesome API
version: 1.2.14
description: What our API does is...

servers:
- url: https://example.com/api
description: Production
- url: https://staging.example.com/api

API Structure

Describe the different operations that your APl exposes - such as
POST /things - with the paths statement, and the events emitted by
your APl with the webhooks statement.

paths:
/things:
post: # Operation object (HTTP Verb)
operationId: url-friendly-identifiexr
summary: Name of Operation
description: Longer **with CommonMazxk!**
requestBody:
description: Create a Thing
content:
application/json: # Content type
schema: {} # Schema Object

responses:
‘201" :
description: "Created"
content:
application/json:

schema: {} # Schema Object

webhooks:
newThing: # Nickname for webhook
post: # Operation object (HTTP Vexb)

Data Types and Schemas

The most important keyword is type, which should be one of:

null JSON "null" value

boolean JSON true or false value
object JSON object

array Ordered list of instances
integer Integer

number Base-10 decimal number
string String of Unicode code points

type: object type: array
properties: items:
id: type: object
type: string required:
format: uuid - password
readOnly: true properties:
name : password:
type: string type: string
examples: writeOnly: true
- Bert

Most tools will filter readOnly properties out of a response body, and
writeOnly out of a request body.

Security

Define the APIs Security Schemes, then apply them globally or per
operation using the security keyword.

Define security schemes

components:
securitySchemes: # Define for use later
ApiKey: # Arbitrary name
type: http
scheme: bearer

Apply security schemes

security: # Document’s root: apply globally
- ApiKey: []

paths: # Apply on this operation only
/widgets:
post:
security:
- ApiKey: []

Allowed types

apiKey, http (basic or bearer), oauth2, mutualTLS,
openldConnect

off bump.sh

Reuse Elements
Avoid duplicating elements by defining reusable components:

components:
securitySchemes: {}
requestBodies: {}
responses: {}
schemas: {}

Use your components with the Sref keyword:
paths:
/widgets:
responses:
‘404" :
Sref: #/components/responses/404

Components can be reached:

internally: #/components/schemas/Usexr
through a remote URL: https: //example.com/user.yml
on file system: . /user.yml#/components/schemas/User

Polymorphism
Combine several schemas using polymorphism statements:
oneOf: Exactly one of the schemas (XOR)

anyOf: One or more of the schemas (OR)
allOf: Allthe schemas (AND)

schema:
allOf: # An admin user
- Sref: '#/components/schemas/User'
- Sref: '#/components/schemas/Admin’

Grouping and sorting

Group operations with metadata using tags.
Define them globally then apply them per operation.

tags:
- name: Things
description: >
This is my thing **description**

paths:
/things:
tags: [Things]

Most tools will sort your documentation endpoints according
to your global tags written order.

https://bump.sh

