
OpenAPI 3.1 Cheat Sheet

Document Structure
An OpenAPI document is a JSON or YAML file containing the
following root elements:

openapi:
info:
servers:
paths:
webhooks:
security:
components:
tags:

 # The spec version

 # API and document info 

 # List of available servers  
 # List of endpoints 

 # List of webhooks

 # Authentication description

 # Reusable components ($ref)

 # Define the grouping tags

3.1
{}

{}
{}

{}
{}

{}
{}

General Information
info:

title:
version:
description:

Your Awesome API
1.2.14

What our API does is...

servers:
url:
description:
url:

 -  

 -

https://example.com/api
Production 

https://staging.example.com/api

API Structure
Describe the different operations that your API exposes - such as
POST /things - with the paths statement, and the events emitted by
your API with the webhooks statement.

paths:

/things: 

post:
operationId:
summary:
description:
requestBody:  

description:
content:

application/json:
schema:

responses: 
'201':

description:
content:

application/json:  
schema:

 # Operation object (HTTP Verb) 

  

  
 # Content type  
 # Schema Object  

 "Created"  
  

 # Schema Object

url-friendly-identifier 
Name of Operation

Longer **with CommonMark!** 

Create a Thing  

{}

  

{}

webhooks:  
newThing:

post:
 # Nickname for webhook 
 # Operation object (HTTP Verb)

 ...

Data Types and Schemas
The most important keyword is type, which should be one of:

null

boolean

object

array

integer

number

string

JSON "null" value

JSON true or false value

JSON object

Ordered list of instances

Integer

Base-10 decimal number

String of Unicode code points

type:
properties:

id:  
type:
format:
readOnly:

name:  
type:
examples:

 object  
  

 string  
 uuid  
 true  

 string  

 - Bert

type:
items:

type:
required:

properties:

password:

type:
writeOnly:

 array  
  

 object

 - password 

 string  
 true

Most tools will filter readOnly properties out of a response body, and
writeOnly out of a request body.

Security
Define the APIs Security Schemes, then apply them globally or per
operation using the security keyword.

Define security schemes
components:

 securitySchemes:

ApiKey:
type:
scheme:

 # Define for use later

 # Arbitrary name

http

bearer

Apply security schemes
security:
 - ApiKey:

paths:
 /widgets:

 post:

 security:

 - ApiKey:

Document’s root: apply globally

 # Apply on this operation only

[]

[]

Allowed types
apiKey, http (basic or bearer), oauth2, mutualTLS,

openIdConnect

Reuse Elements
Avoid duplicating elements by defining reusable components:

components:

 securitySchemes:
 requestBodies:
 responses:
 schemas:
 ...

{}

{}

{}

{}

Use your components with the $ref keyword:

paths:

 /widgets:

 responses:

 '404':

$ref: #/components/responses/404

Components can be reached:

internally:
through a remote URL:
on file system:

#/components/schemas/User

https://example.com/user.yml

./user.yml#/components/schemas/User

Polymorphism
Combine several schemas using polymorphism statements:

oneOf:

anyOf:

allOf:

Exactly one of the schemas (XOR)

One or more of the schemas (OR)

All the schemas (AND)

schema:

 allOf:
 - $ref:
 - $ref:

An admin user

'#/components/schemas/User'

'#/components/schemas/Admin'

Grouping and sorting
Group operations with metadata using tags.  
Define them globally then apply them per operation.

tags:  
 - name:  
 description:  

paths:  
 /things:  
 tags:

Things
>

This is my thing **description**.

[Things]

Most tools will sort your documentation endpoints according  
to your global tags written order.

https://bump.sh

