
AsyncAPI 3.0 Cheat Sheet

Document Structure
An AsyncAPI document is a JSON or YAML file containing the
following root elements:

asyncapi:
info:
servers:
channels:
operations:
components:

3.0
{}

{}
{}
{}
{}

The spec version

API and document info, tags, ...  
List of available servers 
List of addressable channels  
List of operations

Reusable objects ($ref)

General Information
info:

 title:
 version:
 description:
 tags:

Your Awesome API  
1.2.14  

What our API does is...

{} # Define the logical grouping tags

servers:

 production:

 host:
 pathname:
 protocol:
 security:
 staging: 
 ...

example.com

/ws

websocket

[]

Security
Define the APIs Security Schemes, then apply them globally per server
or per operation using the security keyword.

Define security schemes
components:

 securitySchemes:

ApiKey:
type:
scheme:

 # Define for use later

 # Arbitrary name

http

bearer

Apply security schemes (in server or operation objects)
operations:

 onSignup:
 action:
 security:

 - $ref:

Apply on this operation only

send

'#/components/securitySchemes/ApiKey'

Allowed types
userPassword, apiKey, X509, httpApiKey, http,
oauth2, openIdConnect, scramSha256, scramSha512, ...

Channels
Think of channels as data pipelines delivering the intended messages
to the right participants.

channels:

 userSignedUp:

 address:
 messages:

 userData:

 $ref:

'user.signedup'

'#/components/messages/userData'

Operations
Relation between an action, a channel and the allowed messages.

operations:

 onUserSignUp:

 title:
 description:
 action:
 messages:  
 - $ref:
 channel:

 $ref:

User sign up

It updates this and remove that...

receive

'#/channels/userSignedUp/messages/userData'

'#/channels/userSignedUp'

Either send or receive

Messages
Describe data structures that can be exchanged in your API, either at
the channel or operation level.

userData: 
 description:
 payload:
 headers:
 correlationId:

This message is used to... 
{}
{}

{}

schema or multiFormat schema object

A map of key-value pairs schema

Identifier for tracing

Schemas
Schemas define input and output data types. JSON Schema is the
default format, but you can use other formats (Avro, RAML, ...).

JSON Schema

type:

title:
properties:  
 id:  
 type:
 format:

object
User 

string 
uuid

Avro

schemaFormat:
schema:

 type:
 name:
 namespace:
 fields: 
 - name:
 type:
 logicalType:

...avro;version=1.9

record 
User

example.avro 

id 
string 

uuid

Protocol Bindings
Provide additional context and configuration options for the protocols
used by your API. Depending on the protocol, bindings can be defined
at server, channel, operation or message level.

bindings:

 ws:

 headers:

 properties:

 Authorization:

 type:
 method:

string

GET

Full list: github.com/asyncapi/bindings

Reuse Elements
Avoid duplicating elements by defining reusable components:

components:

 servers:
 channels:
 operations:
 messages:
 schemas:
 securitySchemes:
 ...

{}

{}

{}

{}

{}

{}

Use your components with the $ref keyword:

channels:

 userSignedUp:

 messages:

 userData:

 $ref: '#/components/messages/userData'

Components can be reached:

internally:
through a remote URL:
on file system:

#/components/schemas/User

https://example.com/user.yml

./user.yml#/components/schemas/User

Polymorphism
AsyncAPI traits

traits: [] You can define traits to reuse specific properties

across multiple messages and operations.

In JSON Schema

oneOf:

anyOf:

allOf:

Exactly one of the schemas (XOR)

One or more of the schemas (OR)

All the schemas (AND)

In Avro

type: [] One or more of the schemas (OR)

https://github.com/asyncapi/bindings
https://bump.sh

