AsyncAPI 3.0 Cheat Sheet

Document Structure

An AsyncAPI document is a JSON or YAML file containing the
following root elements:

asyncapi: 3.0 # The spec version

info: {} # API and document info, tags,
servers: {} # List of available servers
channels: {} # List of addressable channels
operations: {} # List of operations
components: {} # Reusable objects (Sref)

General Information

info:
title: Your Awesome API
version: 1.2.14
description: What our API does is...
tags: {} # Define the logical grouping tags

servers:
production:
host: example.com
pathname: /ws
protocol: websocket
security: []
staging:

Security

Define the APIs Security Schemes, then apply them globally per server
or per operation using the security keyword.

Define security schemes

components:
securitySchemes: # Define for use later
ApiKey: # Arbitrary name
type: http
scheme: bearer

Apply security schemes (in server or operation objects)

operations:
onSignup: # Apply on this operation only
action: send
security:
- Sref: '#/components/securitySchemes/ApiKey'

Allowed types

userPassword, apiKey, X509, httpApiKey, http,
oauth2, openlIdConnect, scramSha256, scramSha512,

Channels

Think of channels as data pipelines delivering the intended messages
to the right participants.

channels:
userSignedUp:
address: 'user.signedup'
messages:
userData:
Sref: '#/components/messages/userData’

Operations

Relation between an action, a channel and the allowed messages.

operations:
onUserSignUp:
title: Usexr sign up
description: It updates this and remove that...
action: receive # Either send or receive
messages:
- Sref: '#/channels/userSignedUp/messages/userData’
channel:
Sref: '#/channels/userSignedUp'

Messages

Describe data structures that can be exchanged in your API, either at
the channel or operation level.

userData:
description: This message is used to...
payload: {} # schema or multiFormat schema object
headers: {} # A map of key-value pairs schema
correlationId: {} # Identifier for tracing

Schemas

Schemas define input and output data types. JSON Schema is the
default format, but you can use other formats (Avro, RAML, ...).

JSON Schema Avro
type: object schemaFormat: ...avro;version=1.9
title: User schema:
properties: type: record
id: name: User
type: string namespace: example.avro
format: uuid fields:
- name: id

type: string
logicalType: uuid

ol bump.sh

Protocol Bindings

Provide additional context and configuration options for the protocols
used by your API. Depending on the protocol, bindings can be defined
at server, channel, operation or message level.

bindings:
ws:
headers:
properties:
Authorization:
type: string
method: GET

Full list: github.com/asyncapi/bindings

Reuse Elements
Avoid duplicating elements by defining reusable components:
components:

servers: {}

channels: {}

operations: {}

messages: {}

schemas: {}

securitySchemes: {}

Use your components with the Sref keyword:

channels:
userSignedUp:
messages:
userData:
Sref: '#/components/messages/userData’
Components can be reached:

internally: #/components/schemas/Usex
through aremote URL: https://example.com/user.yml
on file system: . /user.yml#/components/schemas/User

Polymorphism
AsyncAPI traits

traits: [] You can define traits to reuse specific properties
across multiple messages and operations.

In JSON Schema

oneOf: Exactly one of the schemas (XOR)
anyOf: One or more of the schemas (OR)
allOf: Allthe schemas (AND)

In Avro

type: [1 Oneormore of the schemas (OR)


https://github.com/asyncapi/bindings
https://bump.sh

